VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade
B.E. III-Semester Main \& Backlog Examinations, Jan./Feb.-2024

Discrete Mathematics

(I.T.)

Time: $\mathbf{3}$ hours

Note: Answer all questions from Part-A and any FIVE from Part-B
Part-A $(10 \times 2=20$ Marks $)$

Q. No.	Stem of the question	M	L	CO	PO
1.	Explain Bi-implication with an example.	2	1	1	1,2,12
2.	Distinguish among contradiction and contingency.	2	1	1	1,2,12
3.	Prove that if $2^{p}-1$ is prime then ' p ' is also prime.	2	1	2	1,2,12
4.	Find the total number of positive divisors $\tau(n)$ and sum of the positive divisors $\sigma(\mathrm{n})$ for the number $\mathrm{n}=14553$.	2	2	2	1,2,12
5.	Explain Generalized Pigeonhole principle with an example.	2	1	3	1,2,12
6.	Solve the recurrence relationa $a_{n}-3 a_{n-1}=5.7^{n}$ for $n \geq 1$ given that $\mathrm{a}_{0}=2$.	2	2	3	1,2,12
7.	If $A=\{1,2,3,4\}$ then write an example of a relation on A which is (i)Reflexive, Symmetric but not Transitive. (ii) Symmetric, Transitive but not reflexive.	2	1	4	1,2,12
8.	Explain the procedure for constructing Hasse diagram.	2	1	4	1,2,12
9.	If $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a simple graph then Prove that $2\|E\| \leq\|V\|^{2}-\|V\|$.	2	2	5	1,2,12
10.	Define planar graph with an example and Verify the Euler's formula for planar graphs with that example. $\text { Part-B }(5 \times 8=40 \text { Marks })$	2	1	5	1,2,12
11. a)	Verify whether $(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{r}$ and $\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r})$ are equivalent.	4	3	1	1,2,12
b)	Use quantifiers to express the following: a) Every computer science student needs a course in discrete mathematics. b) There is a student in this class who owns a personal computer. c) Every student in this class has taken atleast one computer science course. d) Every student in this class has been in atleast one room of every building on campus.	4	1	1	1,2,12
12. a)	Prove that (i) The Sum of even integer and odd integer is odd. (ii) Prove that the square of any odd integer is of the form $8 \mathrm{k}+1$, for some integer ' k '.	4	2	2	1,2,12

b) Apply solution criteria to solve the Linear congruence
13. a) Find the no. of Permutations of the letters of the word "MISSISSIPPI". How many of these begin with 'I' ? Also how many of these begin with ' S ' and end with ' S '.
b) Solve the recurrence relation of the Fibonacci series of numbers.
14. a) Prove that congruence relation is a Equivalence relation.
b) Let $\mathrm{A}=\{1,2,3,4,6,8,12\}$, define a relation ' R ' on A such that $x R y$ iff x divides y, then (i)Prove that (A, R) is a Poset (ii) Draw the Hasse diagram of R (iii) Find the Maximal, Minimal, Greatest \& Least elements if any.
15. a) Define (i) Simple Graph (ii) Complete Graph (iii) Bipartite Graph (iv) Complete Bipartite Graph with one example each.
b) Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph of order ' n ' and size ' m '. If G is bipartite graph then prove that $4 m \leq n^{2}$.
16. a) Prove that the generalization of Demorgan's law $\overline{\cap_{l=1}^{n} A_{l}}=\bigcup_{i=1}^{n} \overline{A_{i}}$, \forall positive integer $n>1$, using Mathematical Induction.
b) Define Euler's φ - function and also find the number of positive integers which are less than 25200 that are relatively prime to 25200 .
17. Answer any two of the following:
a) State and Prove Pascal's Identity.
b) Let $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and $\mathrm{C}=\{5,6,7\}$. Also let R_{1} be a relation from A to $B ; R_{2}$ and R_{3} be the relations from B to C defined by $\mathrm{R}_{\mathrm{l}}=\{(1, \mathrm{x})(2, \mathrm{x})(3, \mathrm{y})(3, \mathrm{z})\}$;
$\mathrm{R}_{2}=\{(\mathrm{w}, 5)(\mathrm{x}, 6)\} ; \mathrm{R}_{3}=\{(\mathrm{w}, 5)(\mathrm{w}, 6)\}$ then find (i) $R_{1} o R_{2}$ and $R_{1} o R_{3}$ (ii) $M\left(R_{1}\right) \quad, \quad M\left(R_{2}\right) \quad \& \quad M\left(R_{1} O \quad R_{2}\right)$ (iii) Verify that $M\left(R_{1} \circ R_{2}\right)=M\left(R_{1}\right) \cdot M\left(R_{2}\right)$.
c) In every graph Show that the number of vertices of odd degree is even.

4	3	2	$1,2,12$
4	2	3	$1,2,12$
		-	
4	3	3	$1,2,12$
4	2	4	$1,2,12$
4	3	4	$1,2,12$

4	1	5	$1,2,12$
4	2	5	$1,2,12$

$4311,2,12$

4	2	2	$1,2,12$
		-	
4	2	3	$1,2,12$
4	3	4	$1,2,12$

$\begin{array}{lll}4 & 2 & 5\end{array} 1,2,12$

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	27.50%
ii)	Blooms Taxonomy Level -2	40%
iii)	Blooms Taxonomy Level $-3 \& 4$	32.5%

